BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN VOL. 42 1531—1533 (1969)

The Reactions of a Mixture of Benzene and cis-2-Butene Photosensitized by Cadmium

Shigeru Tsunashima, Shin Satoh and Shin Sato

Department of Applied Physics, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo

(Received November 15, 1968)

Using the cadmium-photosensitized cis-trans isomerization of cis-2-butene, the lifetime of triplet benzene has been estimated to be of the order of 10⁻⁵ sec for both benzene-d₀ and -d₆. This technique provides a new method for measuring the lifetime of the triplet state of some molecules.

Recently, the efficiencies of hydrocarbons in quenching the triplet cadmium have been measured using the cadmium-photosensitized cis-trans isomerization of cis-2-butene.1) In the cases examined previously, the activated quencher molecule formed in quenching triplet cadmium atoms did not cause the isomerization of 2-butene. 1) In the case of benzene, however, the molecule thus activated is thought to cause the isomerization, because the isomerization of 2-butene occurs effectively by means of triplet benzene.2,3) Namely, a two-step energy-transfer-process such as cadmium→benzene \rightarrow 2-butene may be involved in the reactions of a mixture of benzene and 2-butene photosensitized by triplet cadmium. If this energy-transfer-process is indeed involved, it may be possible to estimate the lifetime of triplet benzene.

The lifetime of triplet benzene has already been estimated in the benzene-photosensitized cis-trans isomerization of 2-butene³⁾ and in the benzene-photosensitized phosphorescence of biacetyl.⁴⁾ In these cases, however, such complications arise as the estimation of the rate of the intersystem crossing.

With this prospect in mind, a study of the reactions of a mixture of benzene and *cis*-2-butene photosensitized by triplet cadmium was undertaken.

Experimental

Research-grade cis-2-butene supplied by the Takachiho Trading Co. was used after bulb-to-bulb distillation. The gas-chromatographic analysis showed that the

impurities were less than 0.5%. Spectorgrade benzene supplied by the Wako Chemical Co. was used after recrystallization and bulb-to-bulb distillation. The mass-spectrometric analysis of benzene-d₆ supplied by the Merck Co. showed that the isotopic impurities were less than 2%.

The light source and the apparatus were similar to those reported on in a previous paper.⁵⁾

A mixture of benzene and cis-2-butene was irradiated at $270\pm1^{\circ}\mathrm{C}$ in the presence of cadmium vapor with a cadmium lamp through a Toshiba UV-29 filter which cut off all wavelengths below 2700Å. After being separated from benzene with a cold trap at $-80^{\circ}\mathrm{C}$, the 2-butenes were analysed by gas chromatography using a column packed with dimethylsulforane on celite (30 m long) supplied by the Shimadzu Co.

Immediately after each run, the light intensity of the resonance line at 3261 Å was measured using the cadmium-photosensitized *cis-trans* isomerization of *cis-2*-butene assuming the quantum yield to be 0.5.5 The initial rate of the isomerization (R) was calculated using Eq. (I):

$$R = (([C] + [T])/2t) \ln (([C] + [T])/([C] - [T]))$$
 (I)

Here, t represents the reaction time. [C] and [T] are the amounts of cis and trans-2-butenes respectively obtained after the irradiation.¹⁾

Results

The rate of the cis-trans isomerization of 2-butene was measured at 270±1°C as a function of the benzene pressure (at constant butene pressures) and also of the butene pressure (at a constant benzene pressure and a constant pressure ratio of benzene to 2-butene).

Figure 1 shows the plots of R/R_0 as a function of the benzene pressure at 5.1 mmHg, 14.7 mmHg, and 22.2 mmHg of cis-2-butene. Here, R and R_0 are the rates of the isomerization of cis-2-butene in the presence and in the absence of benzene respectively. The rate of the isomerization decreased

¹⁾ S. Tsunashima and S. Sato, This Bulletin, **40**, 2987 (1967); S. Tsunashima, S. Satoh and S. Sato, *ibid.*, **42**, 329 (1969).

S. Sato, K. Kikuchi and M. Tanaka, J. Chem. Phys., 39, 239 (1963); M. Tanaka, T. Terao and S. Sato, This Bulletin, 38, 1645 (1965); M. Tanaka, M. Kato and S. Sato, ibid., 39, 1423 (1966).

R. B. Cundall, F. J. Fletcher and D. G. Milne, Trans. Faraday Soc., 60, 1149 (1964); R. B. Cundall and A. S. Davis, ibid., 62, 1151 (1966).

⁴⁾ C. S. Parmenter and B. L. Ring, J. Chem. Phys., **46**, 1423 (1967).

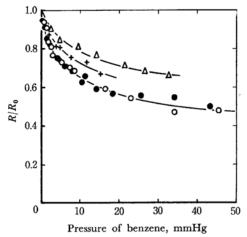


Fig. 1. The ratio of R/R₀ as a function of the benzene pressure at constant 2-butene pressures;
5.1 mmHg (○), 14.7 mmHg (+), and 22.2 mmHg (△) for for benzene-d₀;
5.1 mmHg (●)

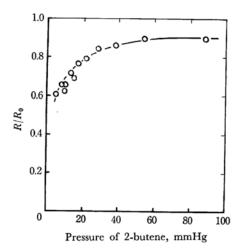


Fig. 2. The ratio of R/R₀ as a function of the 2-butene pressure at 10.9 mmHg of benzene-d₀.

with an increase in the benzene pressure. The effect of benzene- d_6 on the rate of the isomerization was almost the same as that of benzene- d_0 ; *i. e.*, there was no hydrogen-deuterium isotope effect on the rate of isomerization.

Figure 2 shows the plots of R/R_0 as a function of the 2-butene pressure at 10.9 mmHg of benzene. The rate of the isomerization increased with an increase in the butene pressure.

As is shown in Fig. 3, the R/R_0 values obtained with equal pressures of benzene and 2-butene increased with an increase in the total pressure. This clearly indicates that an energy transfer process such as cadmium \rightarrow benzene \rightarrow 2-butene is involved in the mechanism.

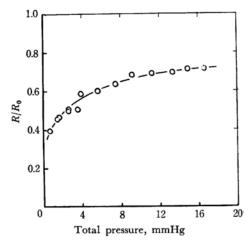


Fig. 3. The ratio of R/R_0 as a function of the total pressure at equal pressures of benzene-d₀ and 2-butene.

Discussion

If a benzene molecule quenches only the triplet cadmium atom and does not cause the cis-trans isomerization of 2-butene, a linear relationship should be obtained between R/R_0 and the pressure ratio, [benzene]/[2-butene].¹⁾ As is shown in Fig. 4, this is not the case with benzene-2-butene mixtures. If an activated benzene molecule formed in quenching triplet cadmium can always cause the cis-trans isomerization without following the other reaction paths, the rate of the isomerization should not be affected by the pressure of benzene or 2-butene. However, the ratio R/R_0 is affected by the pressure change in both benzene and 2-butene. These facts indicate that only a part of the activated benzene formed in quenching triplet cadmium

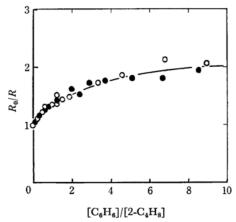


Fig. 4. The ratio of R_0/R as a function of the ratio of the pressure of benzene to that of 2-butene. \bigcirc : benzene-d₆; \bigcirc : benzene-d₆.

⁵⁾ S. Tsunashima and S. Sato, This Bulletin, 41, 284 (1968).

gives rise to the isomerization of 2-butene.

To explain these results, the following mechanism may be suggested:

$$Cd + h\nu \rightarrow Cd*$$

$$Cd* + 2-C_4H_8 \rightarrow Cd + 2-C_4H_8*$$
 (1)

$$2-C_4H_8* + M \rightarrow \frac{1}{2}cis + \frac{1}{2}trans + M$$
 (2)

$$Cd* + C_6H_6 \rightarrow Cd + \alpha C_6H_6* + (1-\alpha)C_6H_6'$$
 (3)

$$C_6H_6^* \to C_6H_6 \tag{4}$$

$$C_6H_6^* + C_6H_6 \rightarrow 2C_6H_6$$
 (5)
 $C_6H_6^* + 2\cdot C_4H_8 \rightarrow C_6H_6 + 2\cdot C_4H_8^*$ (6)

$$C_6H_6' + M \rightarrow C_6H_6 + M$$
 (7)

where Cd* and $2\text{-C}_4\text{H}_8$ * are, respectively, a triplet cadmium atom and a triplet 2-butene molecule which isomerizes to cis- or trans-2-butene with an equal probability by collisional deactivation.⁵⁾ C_6H_6 * may be a triplet benzene molecule in the state of $^3\text{B}_{1\text{u}}$, because its excitation energy is close to that of triplet cadmium. C_6H_6 ' denotes an activated quencher molecule which can not cause the isomerization of 2-butene and which is probably the vibrationally-excited ground state of benzene. α is the fraction of C_6H_6 * formed by the reaction (3).

The steady-state treatment of the above mechanism gives the following equation:

$$(1-\beta)/(R/R_0-\beta) = 1/\alpha(1+k_4/k_6[C_4H_8] + (k_5/k_6)([C_6H_6]/[C_4H_8]))$$
(II)

where

$$1/\beta = 1 + (k_3/k_1)([C_6H_6]/[C_4H_8])$$

The left-hand side of Eq. (II) involves k_3/k_1 , which is the relative efficiency of benzene against 2-butene in quenching triplet cadmium.

Using the data obtained with a constant pressure ratio, the left-hand side of Eq. (II) is in Fig. 5 plotted against the reciprocal of the 2-butene pressure, assuming various values for k_3/k_1 . As the figure shows, the relation in Eq. (II) holds when the value of k_3/k_1 is assumed to be in the range of 2.5—1.5. This value is slightly larger than that calculated from the quenching cross-section of benzene obtained by Steacie and LeRoy by a physical method. The value also is a little larger than those of olefins. This is not unreasonable because benzene has six π -electrons and the excitation energy of triplet benzene is close to that of triplet cadmium.

Using the data obtained at a constant benzene

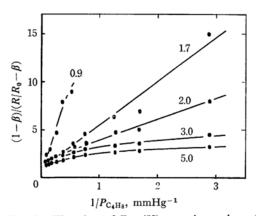


Fig. 5. The plots of Eq. (II) at various values of k_3/k_1 as a function of the reciprocal of the 2-butene pressure.

pressure (Fig. 2), the α ratios are estimated to be 0.77 ± 0.18 (2.5), 0.71 ± 0.20 (2.0), and 0.66 ± 0.23 (1.67), where the values in parentheses indicate the assumed values of k_3/k_1 . That is, triplet benzene is about 70% formed through the reaction (3), although the ratio depends slightly on the estimation of k_3/k_1 .

The rate constant ratios of k_5/k_6 and k_4/k_6 are estimated to be 0.05 and in the order of 10^{-4} mol/l using Eq. (II), k_5/k_6 , which is the ratio of the rate constant of the self-quenching of triplet benzene against that of the energy-transfer process to 2-butene, is very small. This is consistent with the results obtained in the benzene-photosensitization of 2-butene.²

The lifetime of triplet benzene $(1/k_4)$ is estimated to be in the order of 10^{-5} sec assuming the value of k_6 to be 10^9 l/mol sec (cf. 0.96×10^9 $l/\text{mol sec}^{4)}$ and 2.0×10^9 $l/\text{mol sec}^{3.7)$). The value of the lifetime is correct, however, in terms of the order because of a large experimental error and because of the uncertainty of the values used for the calculations, such as k_3/k_1 , α , and k_6 . In the benzene-photosensitization, the lifetime of triplet benzene has been estimated to be $12~\mu\text{sec}^{3)}$ and $26~\mu\text{sec}^{4)}$ at room temperature. In spite of a higher temperature and a different source of triplet benzene, the lifetime estimated here agrees well with the literature values. $^{3.4}$

In conclusion, it may be said that the lifetime of the triplet state of some molecules can be estimated using the cadmium-photosensitized *cis-trans* isomerization of 2-butene, although this method contains a few parameters.

⁶⁾ E. W. R. Steacie and D. J. LeRoy, *J. Chem. Phys.*, **11**, 164 (1943).

A. Morikawa and R. J. Cvetanović, Can. J. Chem., 46, 1813 (1968).